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Abstract. The automation of business processes via blockchain-based systems
allows for trust, reliability and accountability of execution. The link that con-
nects modules that operate within the on-chain sphere and the off-chain world is
key as processes often involve the handling of physical entities and external ser-
vices. The components that create that link are named oracles. Numerous studies
on oracles and their implementations are arising in the literature. Nevertheless,
their availability, integrity and trust could be undermined if centralized architec-
tures are adopted, as taking over an oracle could produce the effect of a supply-
chain attack on the whole system. Solutions are emerging that overcome this issue
by turning the architecture underneath the oracles into a distributed one. In this
paper, we investigate the design and application of oracles, distinguishing their
adoption for the in-flow or out-flow of information and according to the initiator
of the exchange (hence, pull- or push-based).

Keywords: Decentralized applications; Business process management; Distributed
architectures

1 Introduction

Since its inception, the technologies related to the blockchain world are constantly
evolving. In particular, its decentralized aspect has offered a development environment
for Decentralized Applications (DApp), where data integrity and consistency are crucial
factors [12]. However, applications developed on such platforms are unable to obtain
information from the off-chain world, and cannot directly alter the outer world sta-
tus [5,3]. Therefore, intermediate components named oracles have been introduced to
open up the blockchain to the real world [25,18].

One of the usages in which DApps have shown potential is the coordination of
business processes between multiple parties [16,8]. Especially in this scenario, oracles
represent the trusted link with external sources of information. The possibility of er-
roneous or counterfeit information can result in major financial implications for the
various stakeholders [23,13]. By distributing and decentralizing the transmitted infor-
mation, and using redundancy procedures, the likelihood of such problems is greatly
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reduced – which is also one of the driving factors at the core of blockchains. Indeed,
decentralization increases the robustness and security of transmission operations by re-
moving the problems associated with a single point of failure [11].

This paper studies the effect of decentralizing blockchain oracle architectures in
terms of availability, integrity and trust. In particular, we examine the design and the
implementation of decentralized and centralized oracles for the Ethereum platform, cat-
egorized as per the patters described in [18]. Unlike the typical scenario for oracles, we
consider cases in which different off-chain sources retain separate parts of an informa-
tion to be collected, or separate targets receive information from the blockchain. The
proposed implementations are then evaluated in terms of both latency and costs.

The remainder of the paper is structured as follows. Section 2 presents the necessary
background in terms of blockain platforms, the Ethereum ecosystem and the role of
blockchain oracles. Section 3 introduces the motivating use case scenario used to guide
our work. Section 4 sketches our blockchain oracle conceptual framework. Section 5
provides and overview of our performance evaluation, while Section 6 identifies open
challenges and opportunities. Finally, we present our conclusions and plans for future
work in Section 7.

2 Background

In the following, we briefly present background information on blockchains, with a
special focus on the Ethereum ecosystem, and blockchain oracles.

2.1 Blockchain: Definition and Applications

A blockchain is a protocol for the distributed management of a data structure in which
transaction are stored sequentially in an append-only list (the ledger). Updates on the
ledger are communicated via sequential blocks that are built and validated (i.e., mined),
and then broadcasted among the nodes in the network. The ledger is replicated in all
nodes of the network. Nodes agree on the inclusion of the next block information via
consensus algorithms [26]. Its decentralized, persistent and immutable characteristics
make blockchain suitable for the needs of automated systems in which interactions
between multiple untrusted parties are recorded [10]. Such systems have long been pri-
marily used for payments via cryptocurrency transactions, as their infrastructure allows
for the storage and regulation of exchanges without the arbitration of external authori-
tative entities [19].

With the advent of Ethereum [5], second-generation blockchain platforms emerged
as the blockchain turned from being mainly an e-cash distributed management sys-
tem to a distributed programming platform at the basis of Decentralized Applications
(DApps) [17]. In particular, Ethereum enabled the deployment and run of smart con-
tracts (i.e., stateful software artefacts exposing variables and callable methods) in the
blockchain environment through the Ethereum Virtual Machine (EVM). The code of the
deployed smart contract is stored into the blockchain itself. Every time a user interacts
with a smart contract method, a new transaction is generated. As the code is executed
by the EVM and not locally, users are required to pay fees (the so-called “gas”) as a
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compensation for the computational power used. The users can specify the maximum
limit they would pay and the price per gas unit in terms of the Ethereum native cryp-
tocurrency (Ether). The amount of gas to be paid is proportional to the complexity of
the code and the operations involved.

Notice that smart contracts can be invoked from the off-chain and, during the method
execution, exchange messages within the on-chain spheres with other smart contracts.
However, on-chain code cannot directly invoke off-chain programs for the sake of
consistency and determinism. Ethereum smart contracts can emit so-called events [7],
namely developer-specified data fields included within transactions that typically mark
relevant stages of the execution. Off-chain software artefacts can subscribe to such
events to react to the signalled statuses.

The new capabilities unlocked an array of new application domains for blockchains,
including sectors like insurance and music and areas such as the internet of things
and cybersecurity [1,20]. As emphasized by Tareq Ahram et al. [23], a key applica-
tion domain for blockchains is supply chain management. In this scenario, blockchains
are used to record the data generated in every step of the supply chain, by creating
an immutable history of the good produced or the service delivered. In this way, the
blockchain can greatly facilitate the recording of assets and the tracking of invoices,
payments and orders. The motivating use case scenario in Section 3 is rooted in this
domain.

2.2 Blockchain Oracles

The variety of DApps developed on the Ethereum blockchain has underlined the need
to ensure the robustness, consistency and persistence of blockchain data by defining a
structural context in which this technology is proposed as a closed and self-contained
system unable to communicate with the outside world [17,25]. The inability of smart
contracts to access data that are not already stored on-chain can be a limiting factor for
many application scenarios such as that of multi-party business processes. The solution
to this problem comes in the form of oracles [24]. An oracle can be seen as a bridge
that allows for the communication between the on-chain and the off-chain world. The
DApp should be able to trust the oracle in the same way as it does so with the infor-
mation from within the blockchain. Reliability for oracles is key [15,2]. Moreover, an
oracle has the arduous task of acting as a link between the blockchain application and
different external entities, which may potentially be characterized by different technolo-
gies and mechanisms. Therefore, the designation and sharing of a well-defined protocol
becomes fundamental for the proper functioning of the service. Mühlberger et al. [18]
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Fig. 1: BPMN diagram of the use case scenario

describe oracle patterns that consider two dimensions: the information direction (in-
bound or outbound) and the initiator of the information exchange (pull- or push-based).
Inbound oracles inject data into the blockchain from the outside, whereas outbound or-
acles transmit information from the blockchain to the outside. Pull-based oracles are
such that the initiator is the recipient of the information, whereas with push-based or-
acles the initiator is the sender of the information. By combining the push-/pull-based
and inbound/outbound classifications, they define four oracle design patterns. Table 1
summarizes these types of oracles: The pull-based inbound oracle (henceforth, pull-in
oracle for simplicity) is used when an on-chain component starts the procedure and
injects data from the real world. The push-based inbound (push-in for short) oracle is
used by an off-chain component to send data to the blockchain. The pull-based out-
bound (pull-out) oracle is used when an off-chain component needs to retrieve data
from the blockchain. Finally, the push-based outbound (push-out) oracle allows an on-
chain component to transmit information outside the blockchain. In addition to the in-
formation direction, Beniiche [3] categorizes existing oracle solutions according to the
source of information (human, software or hardware) and on their centralized or decen-
tralized architecture. In this paper, we are interested in the design and use of decentral-
ized oracles that realize either of the above-mentioned four patterns in the context of a
blockchain-based process execution.

3 Motivating Use Case Scenario

Figure 1 illustrates a multi-party order-to-cash business process involving a supply
chain depicted as a BPMN collaboration diagram [9]. We will use this process through-
out the paper as a running example and pinpoint the employment of decentralized ora-
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cles. We recall that, according to the classification of Mühlberger et al. [18], oracles are
categorized as inbound or outbound, according to the direction of the information flow,
and as pull-based or push-based, based on the initiator of the information exchange.

In the first part of the workflow, the supplier wants to verify the creditworthiness of
the customer. This verification is based on the usage of a pull-in oracle. If the verifica-
tion generates a positive result, the supplier places the order and it orders the shipment.
If the verification fails, the order is refused. The decentralized architecture of the oracle
allows for the retrieval of distributed information about the creditworthiness, as the cus-
tomer has open accounts in multiple credit institutions. We assume the sensitive infor-
mation about the customer to be properly protected from malicious treatment or leakage
through the usage of existing privacy-preserving record-linkage techniques [21]. Once
the order is placed, and the product is handed to the courier, the shipment procedure
starts. In the meantime, the supplier records the data of the purchase order into an ex-
ternal distributed database via a push-out oracle. The decentralized architecture of the
oracle fits with the need to send data to a destination consisting of multiple nodes as
the distributed database, in our scenario, resorts to physical instances. After that, the
supplier registers the invoice in the blockchain. Meanwhile, the courier delivers the
ordered product. At the customer’s side, a quality control specialist checks that the con-
signed goods conform with the standards. If so, a push-in oracle uses the blockchain
as a notarization means to record that the delivery succeeded. Notice that this passage
requires three actors to give their confirmation based on three distinct information bits:
the courier (for the consignment), the quality control specialist (for the status of the
consigned material) and the customer (for the receipt of the goods). The push-in oracle
is thus decentralized as well, as it requires a confirmation from multiple parties. Finally,
the banking system can unlock the payment. In response to the notification of the final-
ized handling of the order, the bank verifies that the invoice is stored on the blockchain.
As a successive layer of security, it retrieves the data from multiple, physically distinct
blockchain nodes – thereby employing a decentralized pull-based oracle.

In the following section, we show a possible reference architecture for the decen-
tralized version of the aforementioned oracle categories.

4 Decentralized Oracles

The main limitation that characterizes centralized oracles is the presence of a unique
operative unit that works in order to make the information flow between the blockchain
and the outer environment. This particular aspect can cause several critical issues that
put the entire production chain at risk. The first one is the problem of possibly hav-
ing a single point of failure as the oracle could be the weak link for cyber attacks. It
is interesting to notice that attacks in which a trusted software component is injected
with malicious code fall under the name of (software) supply-chain attacks [22]. In-
deed, since the architecture provides only one operative unit, a potential malfunction
determines the end of (trusted) communication and the potential loss of availability.
Moreover, the centralization requires a greater guarantee of correctness of the trans-
mitted information. The single component responsible for the communication cannot
tolerate wrong or incoherent data.
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Fig. 2: Decentralized oracles architecture at large

Decentralized oracles, instead, resort to multiple independent components that send
and receive information. In this case, the oracle becomes an information distribution
network regulated by internal protocols such as an own consensus mechanism or incen-
tivization strategies [14]. It is possible to adopt different approaches to the question of
oracles’ consensus. For example, some systems already on the market such as Gnosis3

and Augur4 adopt a voting mechanism combined with human oracles. Other systems,
such as Chainlink,5 propose a fully automated majority approach. The details on the
management of those networks go beyond the scope of the paper. We refer to [4] for an
overview of the mechanisms underlying an envisioned decentralized oracle network.

Without loss of generality, we assume here a fair behavior of the oracles and an inner
consensus algorithm based on the agreement of the totality of the involved components.
In the remainder, we will show how decentralization can be applied to oracles.

4.1 Architecture Overview

Regardless of the type under consideration, oracles can be split into two main tiers,
as illustrated in Fig. 2. The on-chain tier manages the interaction between the oracle
system and the on-chain world. It has a single software component inside, namely a
full-fledged smart contract that can be seen as an entry point for decentralized appli-
cations that want to use that specific oracle system. The ways the DApp interacts with
the on-chain tier is defined by the interaction protocol of the oracle itself. The off-chain
tier is used to manage the interaction between the real world and the oracle. The two
components of the oracle are able to communicate by sending data to each other. In the
Ethereum ecosystem, when the on-chain tier sends data to the off-chain tier, it generates
a new event containing the relevant information, which is caught in the off-chain tier.
The off-chain tier can send data to the on-chain tier by using the methods exposed by
the smart contract of the latter via a transaction with the necessary input. The decen-
tralisation of the architecture takes place inside the off-chain tier, as multiple external

3https://www.gnosis.io/ Accessed: July 14, 2021.
4https://augur.net/ Accessed: July 14, 2021.
5https://chain.link/ Accessed: July 14, 2021.

https://www.gnosis.io/
https://augur.net/
https://chain.link/
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Fig. 3: Sequence diagram of the interactions with a decentralized pull-in oracle

modules interact with the on-chain world and operate independently, in order to retrieve
data from the off-chain environment or send data to it.

In the following, we detail the design of our decentralized oracle architecture for
each of the four categories described in [18]. We will refer to the oracles’ on-chain
components as on-chain oracles and to the components inside the off-chain tier as off-
chain oracles for the sake of brevity.

4.2 Decentralized Pull-in Oracle

In a pull-in oracle, the interaction begins with the call from the smart contract imple-
menting the process logic to the on-chain oracle, as depicted in the sequence diagram in
Fig. 3. Considering the running example of Section 3, the purpose of the pull-in oracle is
to connect the decentralized application with multiple credit institutions, in order to ver-
ify the creditworthiness of the customer – which is confirmed only if all credit institutes
agree. The smart contract running the check activity interacts with the on-chain compo-
nent of the oracle, generating a new request for verification. The on-chain component,
then, emits a new event containing the data to be processed by the off-chain oracle
(e.g., the customer personal information). At that point, the off-chain oracles catch the
emission of the event, and they execute their business logic (e.g., the creditworthiness
verification) based on different data sources via dedicated API calls (the credit institu-
tions). Once the off-chain oracles have obtained the result of their computation, they
invoke the on-chain oracle callback method to return the answer via transactions. In our
simplified consensus mechanism, we assume that when all the off-chain components
have sent their answer to the on-chain smart contract, it uses the callback method of the
decentralized application, in turn, to return the aggregate result.
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4.3 Decentralized Push-out Oracle

Figure 4 illustrates the interactions that realize the information exchange via a decen-
tralized push-out oracle. Unlike the pull-in oracle, the source of information lies within
the blockchain, which is by its nature a decentralized system. The procedure for push-
ing out the information starts when the smart contract creates a new request for the
outbound transfer of data. The on-chain oracle generates a new event that contains the
data to be exposed. When the off-chain components catch the event, they all operate in-
dependently, invoking external APIs. In our scenario, the purchase order data are stored
in an external distributed database. In order to update the database with new orders, the
smart contract underpinning the activity execution employs a push-out oracle and every
off-chain oracle interacts with a different instance of the distributed database.
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Fig. 6: Sequence diagram of the interaction with a decentralized pull-out oracle

4.4 Decentralized Push-in Oracle

Figure 5 depicts the transfer of information into a blockchain mediated by a decentral-
ized push-in oracle. We assume an off-chain interface gathers data from various sources
and sends it to the off-chain oracles. In turn, the off-chain oracles send the transaction
with those data to the on-chain oracle, which is responsible for the collection of the dif-
ferent pieces of information, their aggregation and final communication with the smart
contract. In our scenario, a decentralized push-in oracle is used to confirm that the de-
livery was successful, upon the notification from three different off-chain information
providers, namely the carrier, the customer and the quality control specialist. Each of
those information providers would interact with a dedicated off-chain oracle and a pos-
itive input from all of them would trigger the successful delivery confirmation to the
smart contract.

4.5 Decentralized Pull-out Oracle

A decentralized pull-out oracle allows multiple external systems to retrieve on-chain
information whenever required, as illustrated in Fig. 6. Without loss of generality, we
assume the external systems to be collectively represented by an off-chain interface for
the sake of readability, as in the case of push-in oracles. Our running example employs
a decentralized pull-out oracle when the banking system retrieves the data related to the
invoice, stored in the blockchain. A centralized oracle would obtain the information to
return to the bank by accessing the blockchain through a single node. If that particular
node was on an incoherent or corrupted fork of the blockchain, the retrieved information
could be misleading.

The decentralized version of the oracle is used here to overcome the potential incon-
sistency of the blockchain data through its own decentralized nature, i.e., by resorting to
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several independent components that watch the blockchain via different nodes. The pro-
cess starts when the off-chain interface (invoked, e.g., by the banking system) requests
data (e.g., the invoice information) to multiple off-chain oracles. Each of them gener-
ates a new query towards different nodes of the blockchain. In every node, the on-chain
oracle would return the current response based on the local view of the blockchain, in
turn given back to the requesting off-chain interface.

5 Implementation

In this section, we briefly describe a proof-of-concept prototype implementing the de-
centralized oracle architectures, and report on the experiments we conducted with it to
have a preliminary assesment of its performance in terms of execution costs and latency.

5.1 Prototype and Experimental Setting

We implemented our system based on the Ethereum blockchain. We encoded the on-
chain components of our prototype in Solidity, the most used language for Ethereum
smart contracts at present. We resorted to Node.js scripts to implement the off-chain
components and the Web3 library to let them interact with the blockchain, i.e., for
the subscription to event emissions and to send transactions to the blockchain. The
produced code is openly available on GitHub.6

To run our tests, we deployed the on-chain components of our prototype on
Ropsten,7 an Ethereum public testnet, in order to execute the tests and obtain the
needed information about latency and costs. The test phase took place through
four different accounts used to deploy the smart contracts and send transactions
from the off-chain components. The transactions involved in our experiments
are identified by the interactions with the following contracts and can be re-
trieved via Etherscan: 0xd7c351Eb1DfaFCf19bf47D3fe55a9D761a274bd7;
0xA6a80830855c81b472A6aa9efb36bBA0fF36A5e4;
0x7Cc2d01fb411b9E59924f2Bc79002f93E9A44ddB;
0xAF69860c860A00d723fc0651f22637aF3b1B0d6D.

5.2 Performance Tests

Using our proof-of-concept implementation, we have conducted a preliminary assess-
ment of its performance in terms of latency and costs, in an attempt to have a rough es-
timation of the differences between centralized and decentralized oracle architectures.
A fully-fledged comparative study is out of scope for this paper and we envision it as a
relevant aim for future studies.

The first important consideration that we made is about the outbound (pull and push)
oracles. Although every on-chain computation requires the triggering of a transaction,

6The implemented prototypes of the oracles used in the experiments are available at: https:
//github.com/DavideBasile1810355/Decentralized_Oracles/.

7Rospten explorer: https://ropsten.etherscan.io/. Accessed: July 14, 2021.

https://ropsten.etherscan.io/address/0xd7c351Eb1DfaFCf19bf47D3fe55a9D761a274bd7
0xd7c351Eb1DfaFCf19bf47D3fe55a9D761a274bd7
https://ropsten.etherscan.io/address/0xA6a80830855c81b472A6aa9efb36bBA0fF36A5e4
0xA6a80830855c81b472A6aa9efb36bBA0fF36A5e4
https://ropsten.etherscan.io/address/0x7Cc2d01fb411b9E59924f2Bc79002f93E9A44ddB
0x7Cc2d01fb411b9E59924f2Bc79002f93E9A44ddB
https://ropsten.etherscan.io/address/0xAF69860c860A00d723fc0651f22637aF3b1B0d6D
0xAF69860c860A00d723fc0651f22637aF3b1B0d6D
https://github.com/DavideBasile1810355/Decentralized_Oracles/
https://github.com/DavideBasile1810355/Decentralized_Oracles/
https://ropsten.etherscan.io/
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Fig. 7: Latency measurement for the pull-in oracle

we do not consider that transaction when measuring the performance of outbound ora-
cles as they would not directly pertain to the oracle operations per se but rather to the
pre-processing by the smart contract. Indeed, on-chain computation may be required to
produce the data later retrieved by pull-out oracles, or for the production of the informa-
tion to be transmitted off-chain by push-out oracles. However, from an abstract stand-
point, this would depend on the kind of data treatments required rather than on the in-
formation exchange per se. In both cases, data is obtained by the off-chain components
by catching the emission of an event, and this action has no cost for the oracle system.
This aspect has two important consequences. First of all, interactions with outbound
oracles do not necessarily involve any expenditure of gas. Furthermore, the transaction
latency for these two kinds of oracles is irrelevant. The blockchain ecosystem does not
affect in any way the global latency as no block mining is involved. However, we re-
mark that blockchain is a distributed system and, as such, latency may occur from the
information distribution itself within the network, aside from the block time or trans-
action latency. This is a crucial factor to consider for process-aware system designers
implementing the operations on-chain: especially if numerous software components are
involved, variable delays and possibly time-outs could affect the overall stability of the
system.

The inbound implementations can provide interesting quantitative information that
can be used for a preliminary performance assessment about costs and latency. We
quantify the spending of the oracles in gas units and its equivalent amount in Euros.
The exchange rate considered at the time of the experiments is 495 Euros per Ether
(ETH), while the average gas price considered for the ETH/gas conversion is 8 Gwei
(0.000,000,008 ETH) per gas unit. Regarding the experiments on latency, our goal was
to measure the time elapsed between the event that starts the interaction and the arrival
at destination (i.e., the blockchain) of the information.
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Fig. 8: Latency measurement for the decentralized push-in oracle

Figure 7 illustrates our time measurement scheme for the pull-in oracle. Consid-
ering our running example, the starter script represents the supplier’s request to verify
the creditworthiness of the customer. The pull-in oracle begins its execution as soon as
the starter script receives the mining receipt of its request – then we start the timer. At
that point, the off-chain component is activated by the on-chain component, and after
it has retrieved the requested data from the off-chain environment, it sends a transac-
tion to the on-chain oracle with that information. The end time of the measurement
corresponds with the instant in which the on-chain component terminates the computa-
tion of the received input. In a decentralized scheme, oracles employ separate off-chain
components that work independently. Therefore, the information processing from the
on-chain component can begin only when the latest off-chain component has transacted
its data.

Figure 8 depicts our measurement scheme for the decentralized push-in oracle (used
in our running example for the delivery confirmation). The start time corresponds with
the first transaction being sent by one of the off-chain components. The end time elapses
when the latest confirmation receipt is received confirming the sending of aggregate
data from the on-chain component. Notice that there is only one initial transaction and
one final receipt in the centralized case.

Table 2 reports on the experimental results. For each test we executed 50 runs, to-
talling 200 runs (i.e., 100 for the centralized case and 100 for the decentralized case).
Table 2(a) shows the results of the experiments for the centralized implementations,
reporting the mean, minimum and maximum values, and the standard deviation. As it
turns out, the fastest implementation is that of the pull-in oracle, with a mean latency
value of 18.24 s and a standard deviation of 15.23 s. The push-in oracle, instead, took
23.54 s on average with a standard deviation of 16.56 s. For as far as costs are con-
cerned, the most expensive implementation is that of the pull-in oracle (with a mean of
42,000.98 gas units, while the push-in oracle required 39,505.47 units).
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Table 2: Latency and cost test results
(a) Centralized oracles

Mean Min Max Std. dev.

Pull-in oracle

Cost (gas) 42,000.98 22,550 62,736 9039.54

Cost (euro) 0.17 0.09 0.25 /

Latency (seconds) 18.24 4.00 93.12 15.23

Push-in oracle

Cost (gas) 39,505.47 38,003 42,239 2027.04

Cost (euro) 0.16 0.15 0.17 /

Latency (seconds) 23.54 4.00 72.92 16.56

(b) Decentralized oracles

Mean Min Max Std. dev.

Pull-in oracle

Cost (gas), Node 1 69,232.97 25,919 94,816 24,124.19

Cost (gas), Node 2 60,565.05 22,919 94,794 27,895.94

Cost (gas), Node 3 49,377.23 25,919 109,522 27,000.39

Total cost (gas) 179,175.30 110,300 236,162 /

Total cost (euro) 0.72 0.44 0.95 /

Latency (seconds) 34.56 8.21 100.33 20.62

Push-in oracle

Cost (gas), Node 1 42,737.50 30,098 58,720 7808.17

Cost (gas), Node 2 42,309 30,098 58,720 7846.29

Cost (gas), Node 3 30,620.50 30,098 58,720 8034.68

Total Cost (gas) 115,667 105,338 136,913 /

Total Cost (euro) 0.46 0.42 0.55 /

Latency (seconds) 27.78 5.79 69.65 14.34

We evaluated the execution cost for oracles both in terms of the singular off-chain
components (which we denote as Node 1, Node 2, and Node 3) and in terms of the
whole oracle system. Considering the motivating scenario, both the pull-in and the
push-in oracles employ three off-chain components that work independently. The cost
of the single interaction is given by the sum of all the transaction costs, generated by
each independent component (denoted as “C1”, . . . , “Cn” in Figs. 7 and 8). Table 2(b)
shows the results for the decentralized case. As it can be seen in the table, in both cases
independent nodes of the same system determine different mean costs. The test shows
that some nodes require on average more gas than others although they belong to the
same oracle. In other words, the gas consumption of the three off-chain components
is not balanced. This can be explained by the order whereby the off-chain nodes send
their transaction to the on-chain component. Indeed, the on-chain component provides
the decentralized application with the data when all the off-chain components have sent
their transaction. By considering the single run, the last off-chain node that sends the
transaction containing the data is the one that spends more. In this case, the code exe-
cuted by the transaction has a higher computational complexity because it also includes
the operations for the delivery of the data to the smart contract of the DApp. The slowest
decentralized implementation is the pull-in oracle a mean of 34.56 s, while the push-in
oracle takes 27.78 s on average. Concerning the costs, the tests show that 179,175 units
of gas are spent for the pull-in oracle and 115,667 units of gas for the push-in one.

6 Opportunities and Challenges

One of the main aspects of the proposed decentralization architecture is availability.
By decentralizing the structure of the oracle we eliminate a single point of failure. In
the case of the centralization, if the unique control entity in charge of the information
flow fails, the entire system oracle stops working and the communication ends. On the
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Table 3: Comparison table between centralized and decentralized implementations
Centralized Decentralized

Pull-in oracle

Average cost (gas) 42,000.98 179,175.30

Average latency (seconds) 18.24 34.56

Push-in oracle

Average cost (gas) 39,505.47 115,667

Average latency (seconds) 23.54 27.78

contrary, in the proposed decentralized architecture, there is no central authority, since
every off-chain component interacts independently with the on-chain component, which
is, in turn, deployed on a decentralized system (the blockchain). In this way, the risk of
failure for the whole system is reduced.

Another aspect that is affected by the decentralization is the integrity of data. Multi-
party processes that rely on oracles may need to perform complex operations involving
significant amounts of resources, and they cannot tolerate faulty or altered data. The fact
that the information is not maintained by only one entity decreases the risk of counterfeit
data injection (as in the unlocking of funds upon the confirmation from multiple nodes
that the invoice was registered). In this way, reliability and trust could be generated. Of
course, it is necessary to define internal mechanisms so that an agreement between the
different components can be achieved. This specific aspect can increase the complexity
of the whole oracle system, thus the centralized version might be preferred in some
scenarios.

The centralized and the decentralized implementations allowed us to carry out a
preliminary analysis of the performance (latency and costs) of the different kinds of
architecture for the inbound oracles. As illustrated in Table 3, in all cases the decentral-
ized prototypes require higher costs and cause more latency than their centralized ver-
sion. This can be explained by the presence of multiple transactions in the case of the
decentralized versions. Indeed, our use case involves the definition of three off-chain
components each of which generates one transaction for every procedure. Unlike the
centralized versions that defines only one transaction for every information exchange.
In this way, the mean cost of the system grows with the number of off-chain components
involved. Alternatively, a decentralized system could check the agreement between the
off-chain components in the real world, whereby only one transaction containing the
final data would be generated. Therefore, it could serve as a viable alternative. How-
ever, if the entity in charge of sending the final transaction fails, the whole system stops
working with such a solution, and the single point of failure problem persists.

Regarding latency, the difference between the two architectures is less evident. In
the case of the pull-in oracle, the centralized version mean result is of 18.24 s against the
34.56 s of the decentralized version. The push-in centralized version, instead, generates
a mean result of 23.54 s, against the 27.78 s of the decentralized version.
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7 Conclusion and Future Work

In this paper, we investigated on the use and development of decentralized oracles as a
means to enhance availability, integrity and trust of information exchanges between the
blockchain and the outer environment in a business process context. We started with
the design and development of on-chain components that communicate with the off-
chain modules developed in a centralized version. Subsequently, we turned the oracles
architecture into a decentralized one and compared it with the previous version. Our
prototype was evaluated in terms of execution costs and latency.

In this paper, we have focused on the Ethereum blockchain in particular. Our study
will be complemented with the development of oracles that are compatible with other
blockchain platforms and then study the use of decentralized oracles for communication
between multiple blockchains. Furthermore, the Solid Web8 has been recently proposed
as a paradigm for web applications preserving data ownership and privacy. Reportedly,
blockchain can be a key enabler of this novel paradigm [6]. Therefore, we will study the
adoption of decentralized oracles to link decentralized systems and information produc-
ers and consumers to the Solid Web. Moreover, in this paper we have devised the merge
and consistency-check of information exchanged with multiple off-chain components
as an on-chain operation. Though more robust, this approach could incur higher costs
than a purely off-chain mechanism. Therefore, an analysis of the best suitable trade-offs
in terms of load-balancing and security of the two solutions is part of our envisioned
future work. Finally, we will conduct in-depth studies on the scalability and robustness
of the architecture, with an investigation on potential threats to security.
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